Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.722
Filtrar
1.
Molecules ; 29(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675539

RESUMEN

Nitrofuran (NF) contamination in food products is a global problem resulting in the banned utilization and importation of nitrofuran contaminated products. A novel chromogenic detection method using a specific DNA aptamer with high affinity and specificity to nitrofurans was developed. Single-stranded DNA aptamers specific to nitrofuran metabolites, including 3-amino-2-oxazolidinone (AOZ), 3-amino-5-methylmorpholino-2-oxazolidinone (AMOZ), and 1-aminohydantoin (AHD), were isolated using magnetic bead-SELEX. The colorimetric detection of nitrofurans using gold nanoparticles (AuNPs) exhibited an AOZ detection range of 0.01-0.06 ppb with a limit of detection (LOD) of 0.03 ppb. At the same time, this system could detect AMOZ and AHD at a range of 0.06 ppb and 10 ppb, respectively. The fast nitrofuran extraction method was optimized for food, such as fish tissues and honey, adjusted to be completed within 3-6 h. This novel apta-chromogenic detection method could detect NF metabolites with a sensitivity below the minimum required performance limit (MPRL). This analysis will be valuable for screening, with a shortened time of detection for aquaculture products such as shrimp and fish muscle tissues.


Asunto(s)
Aptámeros de Nucleótidos , Contaminación de Alimentos , Nanopartículas del Metal , Nitrofuranos , Nitrofuranos/análisis , Nitrofuranos/metabolismo , Nanopartículas del Metal/química , Contaminación de Alimentos/análisis , Aptámeros de Nucleótidos/química , Oxazolidinonas/análisis , Oxazolidinonas/metabolismo , Oro/química , Límite de Detección , Hidantoínas/análisis , Animales , Miel/análisis , Colorimetría/métodos , Análisis de los Alimentos/métodos
2.
Biomed Pharmacother ; 174: 116459, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518599

RESUMEN

Ubiquitin-specific protease (USP), an enzyme catalyzing protein deubiquitination, is involved in biological processes related to metabolic disorders and cancer proliferation. We focused on constructing predictive models tailored to unveil compounds boasting USP21 inhibitory attributes. Six models, Extra Trees Classifier, Random Forest Classifier, LightGBM Classifier, XGBoost Classifier, Bagging Classifier, and a convolutional neural network harnessed from empirical data were selected for the screening process. These models guided our selection of 26 compounds from the FDA-approved drug library for further evaluation. Notably, nifuroxazide emerged as the most potent inhibitor, with a half-maximal inhibitory concentration of 14.9 ± 1.63 µM. The stability of protein-ligand complexes was confirmed using molecular modeling. Furthermore, nifuroxazide treatment of HepG2 cells not only inhibited USP21 and its established substrate ACLY but also elevated p-AMPKα, a downstream functional target of USP21. Intriguingly, we unveiled the previously unknown capacity of nifuroxazide to increase the levels of miR-4458, which was identified as downregulating USP21. This discovery was substantiated by manipulating miR-4458 levels in HepG2 cells, resulting in corresponding changes in USP21 protein levels in line with its predicted interaction with ACLY. Lastly, we confirmed the in vivo efficacy of nifuroxazide in inhibiting USP21 in mice livers, observing concurrent alterations in ACLY and p-AMPKα levels. Collectively, our study establishes nifuroxazide as a promising USP21 inhibitor with potential implications for addressing metabolic disorders and cancer proliferation. This multidimensional investigation sheds light on the intricate regulatory mechanisms involving USP21 and its downstream effects, paving the way for further exploration and therapeutic development.


Asunto(s)
Reposicionamiento de Medicamentos , Hidroxibenzoatos , Aprendizaje Automático , Nitrofuranos , Humanos , Nitrofuranos/farmacología , Animales , Reposicionamiento de Medicamentos/métodos , Células Hep G2 , Hidroxibenzoatos/farmacología , Ratones , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/metabolismo
3.
Elife ; 122024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441416

RESUMEN

Radiation therapy is a primary treatment for hepatocellular carcinoma (HCC), but its effectiveness can be diminished by various factors. The over-expression of PD-L1 has been identified as a critical reason for radiotherapy resistance. Previous studies have demonstrated that nifuroxazide exerts antitumor activity by damaging the Stat3 pathway, but its efficacy against PD-L1 has remained unclear. In this study, we investigated whether nifuroxazide could enhance the efficacy of radiotherapy in HCC by reducing PD-L1 expression. Our results showed that nifuroxazide significantly increased the sensitivity of tumor cells to radiation therapy by inhibiting cell proliferation and migration while increasing apoptosis in vitro. Additionally, nifuroxazide attenuated the up-regulation of PD-L1 expression induced by irradiation, which may be associated with increased degradation of PD-L1 through the ubiquitination-proteasome pathway. Furthermore, nifuroxazide greatly enhanced the efficacy of radiation therapy in H22-bearing mice by inhibiting tumor growth, improving survival, boosting the activation of T lymphocytes, and decelerating the ratios of Treg cells in spleens. Importantly, nifuroxazide limited the increased expression of PD-L1 in tumor tissues induced by radiation therapy. This study confirms, for the first time, that nifuroxazide can augment PD-L1 degradation to improve the efficacy of radiation therapy in HCC-bearing mice.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nitrofuranos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/radioterapia , Antígeno B7-H1 , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/radioterapia , Hidroxibenzoatos
4.
Sci Total Environ ; 919: 170848, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340835

RESUMEN

Furaltadone (FTD) is an antibiotic belonging to the nitrofurans group. It has been broadly used in livestock and aquaculture for therapeutic purposes, as well as for stimulating promotion. Although the European Union has imposed restrictions on the use of FTD since 1995 due to concerns regarding its toxicity, in many cases FTD has been excessively and/or illegally applied in productive animals in developing countries, because of its high efficacy and low-cost. Unlike other nitrofuran compounds, the hydrolytic and photolytic behavior of FTD in natural aquatic systems has not been thoroughly investigated. To this end, hydrolysis in different pH values and photolysis in aquatic environment, including lake, river and sea water have been both examined. Hydrolysis was found to have an insignificant impact on degradation of FTD in the aquatic environment relevant pH values, whereas indirect photolysis proved to be the main route of its elimination. The identification of tentative photoproducts (PPs) was performed using ultra high performance liquid chromatography coupled to hybrid LTQ/Orbitrap high resolution mass spectrometry. A possible pathway for photolytic transformation of FTD was proposed. Additionally, in silico simulations were used to evaluate the toxicity such as the mutagenicity of FTD and PPs. Complementary to the low-cost and time-limited simulations, an in vitro method (Vibrio Fischeri bioluminescence) was also used to assess ecotoxicity.


Asunto(s)
Demencia Frontotemporal , Nitrofuranos , Oxazolidinonas , Contaminantes Químicos del Agua , Animales , Espectrometría de Masas , Nitrofuranos/análisis , Nitrofuranos/química , Agua/química , Fotólisis , Contaminantes Químicos del Agua/análisis , Cinética
5.
Int Immunopharmacol ; 127: 111298, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38070469

RESUMEN

Methotrexate (MTX) has long manifested therapeutic efficacy in several neoplastic and autoimmune disorders. However, MTX-associated intestinal toxicity restricts the continuation of treatment. Nifuroxazide (NIF) is an oral antibiotic approved for gastrointestinal infections as an effective antidiarrheal agent with a high safety profile. The current study was designed to explore the potential efficacy of NIF in alleviating intestinal toxicity associated with MTX chemotherapy with the elucidation of the proposed molecular mechanisms. Rats were administered NIF (50 mg/kg; p.o.) for ten days. On day five, a single i.p. injection of MTX (20 mg/kg) was given to induce intestinal intoxication. At the end of the experiment, duodenal tissue samples were isolated for biochemical, Western blotting, immunohistochemical (IHC), and histopathological analysis via H&E, PSA, and Alcian blue stains. NIF showed antioxidant enteroprotective effects against MTX intestinal intoxication through enhanced expression of the redox-sensitive signals of PPAR-γ, SIRT1, and Nrf2 estimated by IHC. Moreover, NIF down-regulated the pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6), NF-κB protein expression, and the phosphorylation of JAK1/STAT3 proteins, leading to mitigation of intestinal inflammation. In accordance, the histological investigation revealed that NIF ameliorated the intestinal pathological changes, preserved the goblet cells, and reduced the inflammatory cells infiltration. Therefore, NIF could be a promising candidate for adjunctive therapy with MTX to mitigate the associated intestinal injury and increase its tolerability.


Asunto(s)
Hidroxibenzoatos , Metotrexato , FN-kappa B , Nitrofuranos , Ratas , Animales , FN-kappa B/metabolismo , Metotrexato/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , PPAR gamma/metabolismo , Sirtuina 1/metabolismo , Antioxidantes/farmacología , Estrés Oxidativo
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123748, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38091651

RESUMEN

Herein, blue-emitting gold nanoclusters (Au NCs) were carried out through tryptophan as the protecting and reducing agents. In aqueous solution of Au NCs@tryptophan, the addition of furaltadone guaranteed the interaction of furaltadone with tryptophan around Au NCs. The propinquity of furaltadone to Au NCs caused that the fluorescence of Au NCs was weakened by furaltadone based on the inner filter effect (IFE). Under the optimal measurement conditions, the logarithm of relative fluorescence intensity of Au NCs@tryptophan was linearly carried out with the furaltadone amount increasing from 0.5 to 100 µM, the corresponding detection limit was 0.087 µM. The fluorescence change of Au NCs@tryptophan displayed excellent selectivity and sensitivity for furaltadone than other possible substance in the human body. In view of Au NCs@tryptophan, the as-performed fluorescence nanosensor suggested outstanding ability for furaltadone sensing in real samples. Obviously, this nanoprobe of furaltadone could implement the naked-eye visual fluorescence determination of furaltadone.


Asunto(s)
Nanopartículas del Metal , Nitrofuranos , Oxazolidinonas , Triptófano , Humanos , Espectrometría de Fluorescencia/métodos , Oro , Colorantes Fluorescentes
7.
Biofactors ; 50(2): 360-370, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37737462

RESUMEN

The prevalence of diabetes mellitus (DM) is alarmingly increasing worldwide. Diabetic retinopathy (DR) is a prevailing DM microvascular complication, representing the major cause of blindness in working-age population. Inflammation is a crucial player in DR pathogenesis. JAK/STAT3 axis is a pleotropic cascade that modulates diverse inflammatory events. Nifuroxazide (Nifu) is a commonly used oral antibiotic with reported JAK/STAT3 inhibition activity. The present study investigated the potential protective effect of Nifu against diabetes-induced retinal injury. Effect of Nifu on oxidative stress, JAK/STAT3 axis and downstream inflammatory mediators has been also studied. Diabetes was induced in Sprague Dawley rats by single intraperitoneal injection of streptozotocin (50 mg/kg). Animals were assigned into four groups: normal, Nifu control, DM, and DM + Nifu. Nifu was orally administrated at 25 mg/kg/day for 8 weeks. The effects of Nifu on oxidative stress, JAK/STAT3 axis proteins, inflammatory factors, tight junction proteins, histological, and ultrastructural alterations were evaluated using spectrophotometry, gene and protein analyses, and histological studies. Nifu administration to diabetic rats attenuated histopathological and signs of retinal injury. Additionally, Nifu attenuated retinal oxidative stress, inhibited JAK and STAT3 phosphorylation, augmented the expression of STAT3 signaling inhibitor SOCS3, dampened the expression of transcription factor of inflammation NF-κB, and inflammatory cytokine TNF-α. Collectively, the current study indicated that Nifu alleviated DR progression in diabetic rats, suggesting beneficial retino-protective effect. This can be attributed to blocking JAK/STAT3 axis in retinal tissues with subsequent amelioration of oxidative stress and inflammation.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Hidroxibenzoatos , Nitrofuranos , Animales , Ratas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/complicaciones , Nitrofuranos/farmacología , Nitrofuranos/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/efectos de los fármacos , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/efectos de los fármacos
8.
J Pharm Biomed Anal ; 239: 115878, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38039869

RESUMEN

Despite nifurtimox (NFX) being a traditional drug for treating Chagas disease, some of its physicochemical properties are still unknown, especially its thermal behavior, which brings important outcomes regarding stability and compatibility. In this work, a comprehensive study of NFX's thermal properties was conducted to assist incremental innovations that can improve the efficacy of this drug in novel pharmaceutical products. For this purpose, thermal analyses associated with spectroscopy and spectrometry techniques were used. DSC analyses revealed that the melt crystallization of the NFX led to its amorphous form with the possible formation of a minor fraction of a different crystalline phase. Coats-Redfern method using TGA results indicated the activation energy of NFX non-isothermal degradation as 348.8 ± 8.2 kJ mol-1, which coincides with the C-NO2 bond dissociation energy of the 2-nitrofuran. Investigation of the isothermal degradation kinetics using FTIR 2D COS showed the possible detachment of radical NO2 and ethylene from the NFX structure, which could affect its mechanism of action. A preliminary mechanism for the thermal degradation of this drug was also proposed. The results enhanced the understanding of NFX's thermal properties, providing valuable insights, especially for developing NFX-based pharmaceutical products that involve thermal processing.


Asunto(s)
Nifurtimox , Nitrofuranos , Nifurtimox/metabolismo , Nifurtimox/uso terapéutico , Cristalización , Dióxido de Nitrógeno , Preparaciones Farmacéuticas
9.
Food Chem ; 438: 137961, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38011791

RESUMEN

Antibiotic detection is crucial and challenging because the widespread consumption of antibiotics has shown extensive harmful effects on food, environment and human health. Here, we propose highly water-soluble and biocompatible hyaluronic acid (HYA) functionalized upconversion nanoparticles (UCNPs) for ratiometric detection of multiple antibiotics. The ultraviolet upconversion luminescence (UCL) from UCNPs was significantly quenched by nitrofurazone (NFZ)/nitrofurantoin (NFT), and blue UCL was quenched by doxorubicin (DOX), while red UCL remained unchanged for internal reference. The UCNPs-HYA nanoprobes exhibit excellently sensitive and selective NFZ, NFT and DOX detection in linear range of 2.5-100 µM, 2.5-80 µM, and 2.5-200 µM with the LOD at 0.28 µM (55 µg/kg), 0.20 µM (48 µg/kg) and 0.17 µM (97 µg/kg), respectively. The nanoprobes achieved detecting real samples of NFZ in lake water, liquid milk and chicken meat with satisfactory results, and UCL bioimaging of DOX in HeLa cells. The UCNPs-HYA ratiometric nanoprobes are promising for food samples detection and potential biosensing in the cellular environment.


Asunto(s)
Nanopartículas , Nitrofuranos , Humanos , Células HeLa , Ácido Hialurónico , Agua , Doxorrubicina , Antibacterianos
10.
Food Chem ; 439: 138171, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38100875

RESUMEN

Nitrofuran (NF) antibiotics have been banned worldwide in aquaculture due to their potential carcinogenicity and mutagenicity. Because of the short half-life of NF antibiotics, an easy and sensitive multiple lateral flow immunoassay (mLFIA) based on europium nanoparticles (EuNPs) has been successfully established to simultaneously and quantitatively detect 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ), 3-amino-2-oxazolidinone (AOZ) and sodium nifurstylenate (NFS) in aquatic products. The EuNP-mLFIA assay was accomplished within 10 min. The limits of detection (LODs) for AOZ, AMOZ and NFS were 0.013, 0.019 and 0.023 ng/mL, respectively. The average recoveries of AOZ, AMOZ and NFS were 98.0-104.4%, 96.0-102.6% and 98.0-102.8%, respectively. It showed satisfactory consistency, and the feasibility was validated by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Briefly, this method will become a powerful tool for monitoring multiple NF antibiotics and provide promising applications in the field of food safety and environmental testing.


Asunto(s)
Nanopartículas del Metal , Nitrofuranos , Antibacterianos/análisis , Europio , Espectrometría de Masas en Tándem/métodos , Nitrofuranos/análisis , Inmunoensayo
11.
Molecules ; 28(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37687103

RESUMEN

Developing efficient and sensitive MOF-based luminescence sensors for bioactive molecule detection is of great significance and remains a challenge. Benefiting from favorable chemical and thermal stability, as well as excellent luminescence performance, a porous Zn(II)Ho(III) heterometallic-organic framework (ZnHoMOF) was selected here as a bifunctional luminescence sensor for the early diagnosis of a toluene exposure biomarker of hippuric acid (HA) through "turn-on" luminescence enhancing response and the daily monitoring of NFT/NFZ antibiotics through "turn-off" quenching effects in aqueous media with high sensitivity, acceptable selectivity, good anti-interference, exceptional recyclability performance, and low detection limits (LODs) of 0.7 ppm for HA, 0.04 ppm for NFT, and 0.05 ppm for NFZ. Moreover, the developed sensor was employed to quantify HA in diluted urine samples and NFT/NFZ in natural river water with satisfactory results. In addition, the sensing mechanisms of ZnHoMOF as a dual-response chemosensor in efficient detection of HA and NFT/NFZ antibiotics were conducted from the view of photo-induced electron transfer (PET), as well as inner filter effects (IFEs), with the help of time-dependent density functional theory (TD-DFT) and spectral overlap experiments.


Asunto(s)
Antibacterianos , Nitrofuranos , Luminiscencia , Biomarcadores
12.
Molecules ; 28(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37764267

RESUMEN

A series of eight 5-nitrofuran-tagged oxazolyl tetrahydropyrazolopyridines (THPPs) has been prepared in six stages with excellent regioselectivity. The testing of these compounds against pathogens of the ESKAPE panel showed a good activity of lead compound 1-(2-methoxyethyl)-5-(5-nitro-2-furoyl)-3-(1,3-oxazol-5-yl)-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c] pyridine (13g), which is superior to nitrofurantoin. These results confirmed the benefit of combining a THPP scaffold with a nitrofuran warhead. Certain structure-activity relationships were established in the course of this study which were rationalized by the induced-fit docking experiments in silico.


Asunto(s)
Nitrofuranos , Nitrofuranos/farmacología , Pirazoles , Nitrofurantoína , Relación Estructura-Actividad
13.
Antimicrob Agents Chemother ; 67(9): e0047423, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37610224

RESUMEN

Nitro-containing compounds have emerged as important agents in the control of tuberculosis (TB). From a whole-cell high-throughput screen for Mycobacterium tuberculosis (Mtb) growth inhibitors, 10 nitro-containing compounds were prioritized for characterization and mechanism of action studies. HC2209, HC2210, and HC2211 are nitrofuran-based prodrugs that need the cofactor F420 machinery for activation. Unlike pretomanid which depends only on deazaflavin-dependent nitroreductase (Ddn), these nitrofurans depend on Ddn and possibly another F420-dependent reductase for activation. These nitrofurans also differ from pretomanid in their potent activity against Mycobacterium abscessus. Four dinitrobenzamides (HC2217, HC2226, HC2238, and HC2239) and a nitrofuran (HC2250) are proposed to be inhibitors of decaprenyl-phosphoryl-ribose 2'-epimerase 1 (DprE1), based on isolation of resistant mutations in dprE1. Unlike other DprE1 inhibitors, HC2250 was found to be potent against non-replicating persistent bacteria, suggesting additional targets. Two of the compounds, HC2233 and HC2234, were found to have potent, sterilizing activity against replicating and non-replicating Mtb in vitro, but a proposed mechanism of action could not be defined. In a pilot in vivo efficacy study, HC2210 was orally bioavailable and efficacious in reducing bacterial load by ~1 log in a chronic murine TB infection model.


Asunto(s)
Nitrofuranos , Nitroimidazoles , Animales , Ratones , Nitrocompuestos , Nitrofuranos/farmacología , Carga Bacteriana
14.
J Orthop Surg Res ; 18(1): 569, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542269

RESUMEN

BACKGROUND: Non-leaching antibacterial bone cement can generate long-term antibacterial activity, it cannot treat serious infections that have occurred like antibiotic-loaded bone cement. Currently, the antibacterial activity and biocompatibility of non-leaching cement when loaded with antibiotics have yet to be determined. METHODS: Non-leaching antibacterial nitrofuran bone cement (NFBC) specimens were prepared with low-dose and high-dose antibiotics. The antibacterial activity and biocompatibility of NFBC loaded with vancomycin, gentamicin, and tigecycline were compared. The agar diffusion method was employed to observe the inhibition zone of the samples against two bacterial strains from day one to day seven. The CCK-8 assay and acute liver and kidney toxicity test were conducted to assess the effects of the samples on mouse embryo osteoblast precursor cells and C57 mice, respectively. RESULTS: Gentamicin-loaded cement exhibited the most potent antibacterial activity, effectively inhibiting both bacterial strains at a low dose. Tigecycline-loaded cement demonstrated superior biocompatibility, showing no acute liver and kidney toxicity in mice and minimal cytotoxicity to osteoblasts. CONCLUSIONS: NFBC loaded with gentamicin, vancomycin, and tigecycline not only maintains sustained antibacterial activity but also exhibits excellent biocompatibility.


Asunto(s)
Nitrofuranos , Vancomicina , Animales , Ratones , Vancomicina/farmacología , Gentamicinas , Tigeciclina , Cementos para Huesos/farmacología , Antibacterianos/toxicidad , Polimetil Metacrilato
15.
Microbiol Spectr ; 11(4): e0139323, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37409934

RESUMEN

Schistosomiasis is a parasitic disease that afflicts approximately 250 million people worldwide. There is an urgent demand for new antiparasitic agents because praziquantel, the only drug available for the treatment of schistosomiasis, is not universally effective and may derail current progress toward the WHO goal of eliminating this disease as a public health problem by 2030. Nifuroxazide (NFZ), an oral nitrofuran antibiotic, has recently been explored to be repurposed for parasitic diseases. Here, in vitro, in vivo, and in silico studies were conducted to evaluate the activity of NFZ on Schistosoma mansoni. The in vitro study showed significant antiparasitic activity, with 50% effective concentration (EC50) and 90% effective concentration (EC90) values of 8.2 to 10.8 and 13.7 to 19.3 µM, respectively. NFZ also affected worm pairing and egg production and induced severe damage to the tegument of schistosomes. In vivo, a single oral dose of NFZ (400 mg/kg of body weight) to mice harboring either prepatent or patent S. mansoni infection significantly reduced the total worm burden (~40%). In patent infection, NFZ achieved a high reduction in the number of eggs (~80%), but the drug caused a low reduction in the egg burden of animals with prepatent infection. Finally, results from in silico target fishing methods predicted that serine/threonine kinases could be one of the potential targets for NFZ in S. mansoni. Overall, the present study revealed that NFZ possesses antischistosomal properties, mainly in terms of egg burden reduction in animals with patent S. mansoni infection. IMPORTANCE The increasing recognition of the burden imposed by helminthiasis, associated with the limited therapeutic arsenal, has led to initiatives and strategies to research and develop new drugs for the treatment of schistosomiasis. One of these strategies is drug repurposing, which considers low-risk compounds with potentially reduced costs and shorter time for development. In this study, nifuroxazide (NFZ) was evaluated for its anti-Schistosoma mansoni potential through in vitro, in vivo, and in silico studies. In vitro, NFZ affected worm pairing and egg production and induced severe damage to the tegument of schistosomes. In vivo, a single oral dose of NFZ (400 mg/kg) to mice harboring either prepatent or patent S. mansoni infection significantly reduced the total worm burden and egg production. In silico investigations have identified serine/threonine kinases as a molecular target for NFZ. Collectively, these results implied that NFZ might be a potential therapeutic candidate for the treatment of schistosomiasis.


Asunto(s)
Nitrofuranos , Esquistosomiasis mansoni , Esquistosomiasis , Esquistosomicidas , Animales , Ratones , Esquistosomicidas/farmacología , Esquistosomicidas/uso terapéutico , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/parasitología , Schistosoma mansoni , Nitrofuranos/farmacología , Nitrofuranos/uso terapéutico , Treonina/farmacología , Treonina/uso terapéutico , Serina
16.
World J Microbiol Biotechnol ; 39(8): 221, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37273071

RESUMEN

Large-scale use of nitrofurans is associated with a number of risks related to a growing resistance to these compounds and the toxic effects following from their increasing presence in wastewater and the environment. The aim of the study was to investigate an impact of natural surfactant, saponins from Sapindus mukorossi, on antimicrobial properties of nitrofuran antibiotics. Measurements of bacterial metabolic activity indicated a synergistic bactericidal effect in samples with nitrofurantoin or furazolidone, to which saponins were added. Their addition led to more than 50% greater reduction in viable cells than in the samples without saponins. On the other hand, no toxic effect against human colon epithelial cell was observed. It was found that exposure to antibiotics and surfactants caused the cell membranes to be dominated by branched fatty acids. Moreover, the presence of saponins reduced the hydrophobicity of the cell surface making them almost completely hydrophilic. The results have confirmed a high affinity of saponins to the cells of Pseudomonas strains. Their beneficial synergistic effect on the action of antibiotics from the nitrofuran group was also demonstrated. This result opens promising prospects for the use of saponins from S. mukorossi as an adjuvant to reduce the emission of antibiotics into the environment.


Asunto(s)
Nitrofuranos , Saponinas , Humanos , Antibacterianos/farmacología , Saponinas/farmacología , Nitrofuranos/farmacología , Pseudomonas , Tensoactivos , Células Epiteliales , Colon
17.
Bioorg Chem ; 138: 106644, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37302315

RESUMEN

Based on the readily available 3-organyl-5-(chloromethyl)isoxazoles, a number of previously unknown water-soluble conjugates of isoxazoles with thiourea, amino acids, some secondary and tertiary amines, and thioglycolic acid were synthesized. The bacteriostatic activity of aforementioned compounds has been studied against Enterococcus durans B-603, Bacillus subtilis B-407, Rhodococcus qingshengii Ac-2784D, and Escherichia coli B-1238 microorganisms (provided by All-Russian Collection of Microorganisms, VKM). The influence of the nature of the substituents in positions 3 and 5 of the isoxazole ring on the antimicrobial activity of the obtained compounds has been determined. It is found that the highest bacteriostatic effect is observed for compounds containing 4-methoxyphenyl or 5-nitrofuran-2-yl substituents in position 3 of the isoxazole ring as well as methylene group in position 5 bearing residues of l-proline or N-Ac-l-cysteine (5a-d, MIC 0.06-2.5 µg/ml). The leading compounds showed low cytotoxicity on normal human skin fibroblast cells (NAF1nor) and low acute toxicity on mice in comparison with the well-known isoxazole-containing antibiotic oxacillin.


Asunto(s)
Antiinfecciosos , Nitrofuranos , Ratones , Humanos , Animales , Isoxazoles/farmacología , Isoxazoles/química , Antibacterianos/farmacología , Antibacterianos/química , Oxacilina , Pruebas de Sensibilidad Microbiana
18.
Soft Matter ; 19(26): 4926-4938, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37340849

RESUMEN

Nature creates definite architecture with fluorescence capabilities and superior visual adaptation in many organisms, e.g., cephalopods, which differentiates them from their surroundings in the context of colour and texture that allows them to use this in defence, communication, and reproduction. Inspired by nature, we have designed a coordination polymer gel (CPG)-based luminescent soft material where the photophysical properties of the material can be tuned using a low molecular weight gelator (LMWG) with chromophoric functionalities. Herein, a water-stable coordination polymer gel-based luminescent sensor was created using zirconium oxychloride octahydrate as a metal source and H3TATAB (4,4',4''-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tribenzoic acid) as a LMWG. The tripodal carboxylic acid gelator H3TATAB with a triazine backbone induces rigidity in the coordination polymer gel network structure along with the unique photoluminescent properties. The xerogel material can selectively detect Fe3+ and nitrofuran-based antibiotics (i.e., NFT) in aqueous medium through luminescent 'turn-off' phenomena. This material is a potent sensor because of the ultrafast detection of the targeted analytes (Fe3+ and NFT), with consistent efficacy in quenching activity up to five consecutive cycles. More interestingly, colorimetric, portable handy paper strip, thin film-based smart detection approaches (under an ultraviolet (UV) source) were introduced to make this material a viable sensor probe in real-time applications. In addition, we developed a facile method to synthesize CPG-polymer composite material that can be utilized as a transparent thin film to protect against UV radiation (200-360 nm), with approximately 99% absorption efficacy.


Asunto(s)
Antibacterianos , Nitrofuranos , Antibacterianos/química , Nitrofuranos/química , Hierro , Rayos Ultravioleta , Circonio , Colorantes Fluorescentes , Geles
19.
Eur J Pharmacol ; 951: 175776, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37192715

RESUMEN

Nifuroxazide (NFX) is a safe nitrofuran antibacterial drug used clinically to treat acute diarrhea and infectious traveler diarrhea or colitis. Recent studies revealed that NFX displays multiple pharmacological effects, including anticancer, antioxidant, and anti-inflammatory effects. NFX has potential roles in inhibiting thyroid, breast, lung, bladder, liver, and colon cancers and osteosarcoma, melanoma, and others mediated by suppressing STAT3 as well as ALDH1, MMP2, MMP9, Bcl2 and upregulating Bax. Moreover, it has promising effects against sepsis-induced organ injury, hepatic disorders, diabetic nephropathy, ulcerative colitis, and immune disorders. These promising effects appear to be mediated by suppressing STAT3 as well as NF-κB, TLR4, and ß-catenin expressions and effectively decreasing downstream cytokines TNF-α, IL-1ß, and IL-6. Our review summarizes the available studies on the molecular biological mechanisms of NFX in cancer and other diseases and it is recommended to translate the studies in experimental animals and cultured cells and repurpose NFX in various diseases for scientific evidence based on human studies.


Asunto(s)
Colitis Ulcerosa , Nitrofuranos , Animales , Humanos , Transducción de Señal , Diarrea , Viaje , Nitrofuranos/farmacología , Nitrofuranos/uso terapéutico , FN-kappa B/metabolismo , Colitis Ulcerosa/tratamiento farmacológico
20.
Molecules ; 28(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36985501

RESUMEN

A small set of twelve compounds of a nitrofuran carboxamide chemotype was elaborated from a readily available 2,6-diazaspiro[3.4]octane building block, exploring diverse variants of the molecular periphery, including various azole substituents. The in vitro inhibitory activities of the synthesized compounds were assessed against Mycobacterium tuberculosis H37Rv. As a result, a remarkably potent antitubercular lead displaying a minimal inhibitory concentration of 0.016 µg/mL was identified.


Asunto(s)
Mycobacterium tuberculosis , Nitrofuranos , Octanos , Relación Estructura-Actividad , Antituberculosos/farmacología , Nitrofuranos/farmacología , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...